TROUBLE SHOOTING GUIDE

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>POSSIBLE CAUSE</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>No agglutination in “Patient Test” wells</td>
<td>a) active material settled out</td>
<td>a) swirl bottle as per Procedure Step #9</td>
</tr>
<tr>
<td></td>
<td>b) forgot to use diluent to reconstitute lyophilized material</td>
<td>b) see Procedure Step #8</td>
</tr>
<tr>
<td></td>
<td>c) did not use downward pressure in stirring to reconstitute lyophilized material</td>
<td>c) see Procedure Step #10</td>
</tr>
<tr>
<td></td>
<td>d) inadequate amount of blood relative to EDTA in sample draw</td>
<td>d) see Procedure Step #1 and Limitations of the Procedure #6</td>
</tr>
<tr>
<td></td>
<td>e) use of packed cells instead of whole blood as a sample</td>
<td>e) dilute sample 1:1 with saline and re-run</td>
</tr>
</tbody>
</table>

Character of agglutination in Type B well differs from that in Type A well

This is normal

See Results

References:


Blood Group Determination Assay

For in vitro use

Description and Intended Use: As the practice of veterinary transfusion medicine has undergone tremendous growth in recent years, the importance of identifying blood groups in cats has increased. In particular, the demand for identifying blood groups is on the rise, because only by predetermining the blood type of a blood transfusion recipient can potentially fatal transfusion mistakes be avoided.

One blood group system consisting of two antigens expressed either alone or in combination has been described in cats: Type A, Type B and Type AB. While the antigens are unrelated to human ABO antigens and are defined by feline alloimmune sera, blood group incidence varies among breeds. Blood groups in cats are inherited as simple autosomal traits, with Type A being dominant over Type B. Most cats possess the A antigen, and about one-third of those have naturally occurring, low-titered, anti-B antibody. Type B cats all have a naturally occurring, highly titered anti-A antibody. A recent survey in the United States showed that the percentage of cats with the B antigen varied from 0.3% to 59% depending on the breed.24 Those breeds with high frequency of Type B blood are noted below:

<table>
<thead>
<tr>
<th>BREED</th>
<th>FREQUENCY OF B TYPE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abyssinian</td>
<td>20</td>
</tr>
<tr>
<td>Birman</td>
<td>16</td>
</tr>
<tr>
<td>British SH</td>
<td>59</td>
</tr>
<tr>
<td>Devon Rex</td>
<td>43</td>
</tr>
<tr>
<td>Himalayan</td>
<td>20</td>
</tr>
<tr>
<td>Persian</td>
<td>24</td>
</tr>
<tr>
<td>Scottish Fold</td>
<td>15</td>
</tr>
<tr>
<td>Somali</td>
<td>22</td>
</tr>
</tbody>
</table>

Type AB cats are rare and since such cats have both A and B antigens on the erythrocyte membrane, they do not have or develop anti-A or anti-B antibodies.

Blood typing of cats is important in veterinary medical practice to prevent transfusion reactions in cats with A or B erythrocytes. Cats with B erythrocytes exhibit an immediate and catastrophic systemic anaphylactic reaction (hypotension, bradycardia, apnea, urination, defecation, vomiting, and severe neurological depression) and hemolytic signs (hemoglobinemia and hemoglobinuria) when transfused with Type A blood because of their naturally high-titered anti-A antibody. Those cats with A erythrocytes and natural low-titered anti-B antibody will exhibit only a mild reaction when transfused with the B blood, but even this can make a difference in recovery rates in a medical situation since the transfused erythrocytes have a short life span. Other cats with A erythrocytes will not exhibit a reaction when first transfused with Type B blood but will, as a result, develop moderate titers of anti-B antibody that will result in a serious reaction upon a subsequent incompatible transfusion.

Blood group determinations in cats is also important in making breeding decisions and in understanding medical problems in kittens. Neonatal isoerythrolysis can occur when there is blood group incompatibility between maternal and fetal blood.19,20 Because of the naturally occurring highly titered anti-A antibodies in Type B cats, neonatal isoerythrolysis can occur in Type A kittens resulting from a mating of a Type B queen with a Type A male. The maternal anti-type A antibody occurs in the colostrum where it can be absorbed by the newborn kitten, and consequently, destroy its erythrocytes. Clinically, the kittens can seem normal at birth, but develop signs after nursing, fade and die within the first days of life. Determining the blood groups of the queen and the tom prior to mating, coupled with appropriate genetic counseling, can minimize neonatal isoerythrolysis.

RapidVet-H (Feline) is intended for use to classify cats as blood group Type A, Type B, or Type AB.

In both cases, the antisera lyophilized on a Test Card is reconstituted and well mixed with whole blood from the patient. All Type A erythrocytes react with their specific antisera causing agglutination; all Type B erythrocytes react similarly; all Type AB erythrocytes react with both antisera causing agglutination in all cases. The results are visually identified. The characteristics of the agglutination in the "A" wells and in the "B" wells differs significantly because of the different nature of the antisera used.

Caveat: A certain number of feline patients exhibit auto-agglutination of varying degrees due to serum factors that cause agglutination of the patient’s own red cells. If a patient exhibits this under test conditions, it will not be possible to definitively type this patient without separating the serum and serially washing the remaining red cells before performing the test. RapidVet-H (Feline) provides a well for use to screen for such patients.

Principle and Explanation of the Assay: The RapidVet-H (Feline) assay is based on the agglutination reaction that occurs when an erythrocyte which contains either a Type A, Type B or a Type AB antigen...
on its surface membrane interacts with a lyophilized antiserum specific to the particular antigen. The material lyophilized on the Test Card is not easily visible.

Type A erythrocytes are characterized by the NeuGcGlcNAc form of neuraminic acid present in the ganglioside and lack the NeuGc present on Type A erythrocytes. Type B erythrocytes are characterized by the NeuAc form of neuraminic acid present in the ganglioside and lack the NeuAc present on Type B erythrocytes. The binding specificity of this form with a lectin, Triticum Vulgaris, has been established. The RapidVet-H (Feline) uses the Triticum Vulgaris lectin to detect the presence of Type B blood.

Reagents and Materials: This test kit contains the reagents and materials listed below. Store upright.

Agglutination Test Cards. Each card has 3 visually defined wells. This includes one well identified as "Auto-Agglutination Saline Screen" and two wells identified as "Patient Test" – one Type A and one Type B. The cards are packaged individually in sealed polyethylene sleeves each containing a desiccant bag. The cards must be stored in a refrigerator at 2-7°C.

1 Bottle Diluent. The clear plastic bottle contains 0.02 mol/L phosphate buffered saline (PBS) at pH 7.4. The dropping tip accurately dispenses 40 µl. Refrigerate (2-7°C).

Pipettes and Stirrers. Each polyethylene bag contains 2 plastic pipettes and 3 stirrers.

Materials Required But Not Provided: None

Reagent Preparation: None

Storage and Stability:

1. The Agglutination Test Cards are stable for a period of 18 months from date of manufacture if refrigerated. Each Test Card is labeled with an expiration date. It is not necessary to bring the Test Card to room temperature prior to use.

2. The diluent is stable for 18 months from the date of manufacture if refrigerated (2-7°C). Each bottle of diluent is labeled with an expiration date.

3. If the test is run properly, at least one of the wells labeled "Patient Test" will agglutinate. Thus, the test is self-controlled.

NOTE: Each RapidVet-H (Feline) test kit is imprinted with an expiration date which represents the date of manufacture.

PROCEDURE:

1. DRAW blood from the patient into a syringe or tube coated with or containing EDTA as an anticoagulant. The assay requires only 150 µl whole blood but the tube should be full or the syringe should be filled so that there is a proper concentration of EDTA. If the type is not to be determined immediately, nutrients such as CPDA should not be added.

2. REMOVE the Test Card from its plastic sleeve. Save the plastic sleeve and set aside the desiccant bag.

3. WRITE the name/number of the cat and the testing date on the card.

4. PLACE the Test Card on a flat surface.

5. DISPENSE 1 drop of diluent (40 µl) from the dropping bottle into the well marked "Auto-Agglutination Saline Screen".

6. ASPIRATE a small amount of patient sample into the pipette and release 1 drop (50 µl) into the well marked "Auto-Agglutination Saline Screen". Using a stirrer, spread and mix the materials within the ENTIRETY of this well for about 10 seconds, PRESSING DOWNWARD FIRMLY. (See Note 1 for correct use of the pipette.)

7. A small percentage of ill cats and of healthy cats auto-agglutinate. If agglutination is observed, STOP the test and perform normal cell washing procedures before proceeding.

8. DISPENSE 1 drop of diluent (40 µl) from the dropping bottle into each remaining well to be used. The diluent assists in the reconstitution of the lyophilized material.

9. Gently SWIRL the tube containing the patient sample to resuspend any solid material.

10. ASPIRATE a small amount of patient sample into the pipette and release 1 drop (50 µl) into each of the 2 wells marked "Patient Test". Using a stirrer, spread and mix the materials within the ENTIRETY of one of these wells for about 10 seconds, PRESSING DOWNWARD FIRMLY. Take a new stirrer and similarly spread and mix the materials within the ENTIRETY of the other well for about 10 seconds.

NEW 11. ADD A SECOND DROP OF DILUENT TO THE WELL MARKED "TYPE A". DO NOT STIR THE WELL WITH A STIRRER.

12. ROCK the card with a transaxial motion for 2 minutes, being sure that the materials are mixing and "rotating" within each well. Be careful not to cross-contaminate.

13. SET the card at a 10 - 20° angle to allow excess blood to run to the bottom of the wells. Placing the top of the card on the desiccant bag will accomplish this.

14. READ the results and note the wells where agglutination has occurred.

15. After the materials on the card have dried, REPLACE the card in its plastic sleeve for a permanent record.

PROCEDURE NOTE 1: Use of the pipette: Hold the plastic tube between thumb and forefinger near the flat, sealed end, squeeze tightly and do not release pressure. Hold the specimen tube vertically and place the open end of the plastic tube below the surface of the specimen. Release finger pressure to draw up the sample.

Next, hold the pipette in a perpendicular position directly over the well to which the sample is to be delivered. Squeeze gently and allow one free drop to fall into the well (50 µl). Each pipette is designed to expel slightly in excess of 50 µl to compensate for a small amount of specimen retained by the stirrer.

Repeat for the second well.

Use each pipette for only one patient sample, then discard. Under no circumstance should the pipette be used for more than one sample as cross-contamination will occur, and the test results will be inaccurate.

Results: If the assay was run correctly, visible agglutination should have occurred in at least one of the wells marked "Patient Test".

If the patient sample shows agglutination in the well marked Type A, the cat tested has blood group A. If the patient sample shows agglutination in the well marked Type B, the cat tested has blood group B. If the patient sample shows agglutination in both patient wells, the cat tested has blood group AB.

Any fine, granular appearance developing after 2 minutes should be disregarded in determining the results. The character of the agglutination in the Type B well is different from that in the Type A well. Agglutination in the Type B well usually includes a small number of large, ameboid globs. The agglutination in the Type A well will usually be in the form of a large number of discrete, small aggregations, each like the head of a small pin.

If the patient is very anemic, and if the patient is Type A, the antigen sites may become saturated with bound antibody preventing cross-linking and agglutination. This is due to steric hindrance of the anti-A antibody. If the patient has a low PCV, or if there is no reaction in the patient wells but the optional controls, if used, run normally, run the test without using PBS in the patient wells.

Limitations of the Procedure:

1. To obtain accurate results it is essential that correct procedure be followed.

2. Always use a new dispensing pipette for each specimen and a new stirrer for each well. Reusing any device will cause cross-contamination and inaccurate results.

3. The stability of the individual components of the kit varies. Store the components as indicated on the labels. Do not use any component beyond the indicated expiration date. Use of expired materials may cause unreliable results.

4. The diluent is provided in a bottle with a screw cap to minimize inadvertent bacterial or other contamination. Diluent from other sources in the laboratory should not be utilized.

5. The physical integrity of the patient sample is critical to correct results.

6. Always draw a full syringe or tube containing EDTA. Less blood will cause too high a concentration of EDTA in the specimen to be tested.

Known Interfering Substances: None

Performance Characteristics: A total of 2116 feline erythrocyte samples were tested on the RapidVet-H (Feline) assay utilizing the anti-A monoclonal antibody. Of these, 2075 were Type A, 31 were Type B and 10 were determined to be Type AB. The results conform to results obtained by cross-matching with known antisera and by other reference methods.